Mechanisms underlying hypoxia-induced neuronal apoptosis.

نویسندگان

  • K J Banasiak
  • Y Xia
  • G G Haddad
چکیده

In vivo models of cerebral hypoxia-ischemia have shown that neuronal death may occur via necrosis or apoptosis. Necrosis is, in general, a rapidly occurring form of cell death that has been attributed, in part, to alterations in ionic homeostasis. In contrast, apoptosis is a delayed form of cell death that occurs as the result of activation of a genetic program. In the past decade, we have learned considerably about the mechanisms underlying apoptotic neuronal death following cerebral hypoxia-ischemia. With this growth in knowledge, we are coming to the realization that apoptosis and necrosis, although morphologically distinct, are likely part of a continuum of cell death with similar operative mechanisms. For example, following hypoxia-ischemia, excitatory amino acid release and alterations in ionic homeostasis contribute to both necrotic and apoptotic neuronal death. However, apoptosis is distinguished from necrosis in that gene activation is the predominant mechanism regulating cell survival. Following hypoxic-ischemic episodes in the brain, genes that promote as well as inhibit apoptosis are activated. It is the balance in the expression of pro- and anti-apoptotic genes that likely determines the fate of neurons exposed to hypoxia. The balance in expression of pro- and anti-apoptotic genes may also account for the regional differences in vulnerability to hypoxic insults. In this review, we will examine the known mechanisms underlying apoptosis in neurons exposed to hypoxia and hypoxia-ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oral administration of Ginkgolide B alleviates hypoxia-induced neuronal damage in rat hippocampus by inhibiting oxidative stress and apoptosis

Objective(s): The aim of this study is to explore the potential neuroprotective effects of Ginkgolide B (GB), a main terpene lactone and active component in Ginkgo biloba, in hypoxia-induced neuronal damage, and to further investigate its possible mechanisms.Materials and Methods: 54 Sprague-Dawley rats were randomly divided into three groups: the untreated control group (n=18); the hypoxia gro...

متن کامل

YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission

YiQiFuMai (YQFM) powder injection has been reported to be used in cardiovascular and nervous system diseases with marked efficacy. However, as a treatment against diseases characterized by hypoxia, lassitude, and asthenia, the effects and underlying mechanisms of YQFM in neuronal mitochondrial function and dynamics have not been fully elucidated. Here, we demonstrated that YQFM inhibited mitoch...

متن کامل

Rensheng Shouwu Protects against Neuronal Injury by Inhibiting the Apoptosis Induced by Hypoxia and Reoxygenation

Rensheng Shouwu Capsule (RSSW) is an approved and patented drug of Traditional Chinese Medicine that has been used for years to treat vascular dementia and neural syndrome related to cerebral-vascular ischemia. However, the underlying mechanism of RSSW remains unclear. Previous studies have indicated that RSSW could significantly reduce cerebral ischemic injury and improve vascular dementia. In...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Effect of Ca2EDTA on Zinc Mediated Inflammation and Neuronal Apoptosis in Hippocampus of an In Vivo Mouse Model of Hypobaric Hypoxia

BACKGROUND Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neurobiology

دوره 62 3  شماره 

صفحات  -

تاریخ انتشار 2000